Metamath Proof Explorer


Theorem opthreg

Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg (via the preleq step). See df-op for a description of other ordered pair representations. Exercise 34 of Enderton p. 207. (Contributed by NM, 16-Oct-1996) (Proof shortened by AV, 15-Jun-2022)

Ref Expression
Hypotheses opthreg.1 AV
opthreg.2 BV
opthreg.3 CV
opthreg.4 DV
Assertion opthreg AAB=CCDA=CB=D

Proof

Step Hyp Ref Expression
1 opthreg.1 AV
2 opthreg.2 BV
3 opthreg.3 CV
4 opthreg.4 DV
5 1 prid1 AAB
6 3 prid1 CCD
7 prex ABV
8 7 preleq AABCCDAAB=CCDA=CAB=CD
9 5 6 8 mpanl12 AAB=CCDA=CAB=CD
10 preq1 A=CAB=CB
11 10 eqeq1d A=CAB=CDCB=CD
12 2 4 preqr2 CB=CDB=D
13 11 12 syl6bi A=CAB=CDB=D
14 13 imdistani A=CAB=CDA=CB=D
15 9 14 syl AAB=CCDA=CB=D
16 preq1 A=CAAB=CAB
17 16 adantr A=CB=DAAB=CAB
18 preq12 A=CB=DAB=CD
19 18 preq2d A=CB=DCAB=CCD
20 17 19 eqtrd A=CB=DAAB=CCD
21 15 20 impbii AAB=CCDA=CB=D