Metamath Proof Explorer


Theorem ord2eln012

Description: An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion ord2eln012 OrdA2𝑜AAA1𝑜A2𝑜

Proof

Step Hyp Ref Expression
1 ne0i 2𝑜AA
2 2on0 2𝑜
3 el1o 2𝑜1𝑜2𝑜=
4 2 3 nemtbir ¬2𝑜1𝑜
5 eleq2 A=1𝑜2𝑜A2𝑜1𝑜
6 4 5 mtbiri A=1𝑜¬2𝑜A
7 6 necon2ai 2𝑜AA1𝑜
8 2on 2𝑜On
9 8 onirri ¬2𝑜2𝑜
10 eleq2 A=2𝑜2𝑜A2𝑜2𝑜
11 9 10 mtbiri A=2𝑜¬2𝑜A
12 11 necon2ai 2𝑜AA2𝑜
13 1 7 12 3jca 2𝑜AAA1𝑜A2𝑜
14 nesym A2𝑜¬2𝑜=A
15 14 biimpi A2𝑜¬2𝑜=A
16 15 3ad2ant3 AA1𝑜A2𝑜¬2𝑜=A
17 simp1 AA1𝑜A2𝑜A
18 simp2 AA1𝑜A2𝑜A1𝑜
19 17 18 nelprd AA1𝑜A2𝑜¬A1𝑜
20 df2o3 2𝑜=1𝑜
21 20 eleq2i A2𝑜A1𝑜
22 19 21 sylnibr AA1𝑜A2𝑜¬A2𝑜
23 16 22 jca AA1𝑜A2𝑜¬2𝑜=A¬A2𝑜
24 pm4.56 ¬2𝑜=A¬A2𝑜¬2𝑜=AA2𝑜
25 23 24 sylib AA1𝑜A2𝑜¬2𝑜=AA2𝑜
26 8 onordi Ord2𝑜
27 ordtri2 Ord2𝑜OrdA2𝑜A¬2𝑜=AA2𝑜
28 26 27 mpan OrdA2𝑜A¬2𝑜=AA2𝑜
29 25 28 imbitrrid OrdAAA1𝑜A2𝑜2𝑜A
30 13 29 impbid2 OrdA2𝑜AAA1𝑜A2𝑜