Metamath Proof Explorer


Theorem ordunidif

Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion ordunidif Ord A B A A B = A

Proof

Step Hyp Ref Expression
1 ordelon Ord A B A B On
2 onelss B On x B x B
3 1 2 syl Ord A B A x B x B
4 eloni B On Ord B
5 ordirr Ord B ¬ B B
6 4 5 syl B On ¬ B B
7 eldif B A B B A ¬ B B
8 7 simplbi2 B A ¬ B B B A B
9 6 8 syl5 B A B On B A B
10 9 adantl Ord A B A B On B A B
11 1 10 mpd Ord A B A B A B
12 3 11 jctild Ord A B A x B B A B x B
13 12 adantr Ord A B A x A x B B A B x B
14 sseq2 y = B x y x B
15 14 rspcev B A B x B y A B x y
16 13 15 syl6 Ord A B A x A x B y A B x y
17 eldif x A B x A ¬ x B
18 17 biimpri x A ¬ x B x A B
19 ssid x x
20 18 19 jctir x A ¬ x B x A B x x
21 20 ex x A ¬ x B x A B x x
22 sseq2 y = x x y x x
23 22 rspcev x A B x x y A B x y
24 21 23 syl6 x A ¬ x B y A B x y
25 24 adantl Ord A B A x A ¬ x B y A B x y
26 16 25 pm2.61d Ord A B A x A y A B x y
27 26 ralrimiva Ord A B A x A y A B x y
28 unidif x A y A B x y A B = A
29 27 28 syl Ord A B A A B = A