Metamath Proof Explorer


Theorem orduniss2

Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005)

Ref Expression
Assertion orduniss2 OrdAxOn|xA=A

Proof

Step Hyp Ref Expression
1 df-rab xOn|xA=x|xOnxA
2 incom x|xOnx|xA=x|xAx|xOn
3 inab x|xOnx|xA=x|xOnxA
4 df-pw 𝒫A=x|xA
5 4 eqcomi x|xA=𝒫A
6 abid2 x|xOn=On
7 5 6 ineq12i x|xAx|xOn=𝒫AOn
8 2 3 7 3eqtr3i x|xOnxA=𝒫AOn
9 1 8 eqtri xOn|xA=𝒫AOn
10 ordpwsuc OrdA𝒫AOn=sucA
11 9 10 eqtrid OrdAxOn|xA=sucA
12 11 unieqd OrdAxOn|xA=sucA
13 ordunisuc OrdAsucA=A
14 12 13 eqtrd OrdAxOn|xA=A