Metamath Proof Explorer


Theorem otthg

Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otthg A U B V C W A B C = D E F A = D B = E C = F

Proof

Step Hyp Ref Expression
1 df-ot A B C = A B C
2 df-ot D E F = D E F
3 1 2 eqeq12i A B C = D E F A B C = D E F
4 opex A B V
5 opthg A B V C W A B C = D E F A B = D E C = F
6 4 5 mpan C W A B C = D E F A B = D E C = F
7 opthg A U B V A B = D E A = D B = E
8 7 anbi1d A U B V A B = D E C = F A = D B = E C = F
9 df-3an A = D B = E C = F A = D B = E C = F
10 8 9 bitr4di A U B V A B = D E C = F A = D B = E C = F
11 6 10 sylan9bbr A U B V C W A B C = D E F A = D B = E C = F
12 11 3impa A U B V C W A B C = D E F A = D B = E C = F
13 3 12 bitrid A U B V C W A B C = D E F A = D B = E C = F