Metamath Proof Explorer


Theorem ovmpodxf

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovmpodx.1 φF=xC,yDR
ovmpodx.2 φx=Ay=BR=S
ovmpodx.3 φx=AD=L
ovmpodx.4 φAC
ovmpodx.5 φBL
ovmpodx.6 φSX
ovmpodxf.px xφ
ovmpodxf.py yφ
ovmpodxf.ay _yA
ovmpodxf.bx _xB
ovmpodxf.sx _xS
ovmpodxf.sy _yS
Assertion ovmpodxf φAFB=S

Proof

Step Hyp Ref Expression
1 ovmpodx.1 φF=xC,yDR
2 ovmpodx.2 φx=Ay=BR=S
3 ovmpodx.3 φx=AD=L
4 ovmpodx.4 φAC
5 ovmpodx.5 φBL
6 ovmpodx.6 φSX
7 ovmpodxf.px xφ
8 ovmpodxf.py yφ
9 ovmpodxf.ay _yA
10 ovmpodxf.bx _xB
11 ovmpodxf.sx _xS
12 ovmpodxf.sy _yS
13 1 oveqd φAFB=AxC,yDRB
14 eqid xC,yDR=xC,yDR
15 14 ovmpt4g xCyDRVxxC,yDRy=R
16 15 a1i φxCyDRVxxC,yDRy=R
17 8 16 alrimi φyxCyDRVxxC,yDRy=R
18 5 17 spsbcd φ[˙B/y]˙xCyDRVxxC,yDRy=R
19 7 18 alrimi φx[˙B/y]˙xCyDRVxxC,yDRy=R
20 4 19 spsbcd φ[˙A/x]˙[˙B/y]˙xCyDRVxxC,yDRy=R
21 5 adantr φx=ABL
22 simplr φx=Ay=Bx=A
23 4 ad2antrr φx=Ay=BAC
24 22 23 eqeltrd φx=Ay=BxC
25 5 ad2antrr φx=Ay=BBL
26 simpr φx=Ay=By=B
27 3 adantr φx=Ay=BD=L
28 25 26 27 3eltr4d φx=Ay=ByD
29 2 anassrs φx=Ay=BR=S
30 6 elexd φSV
31 30 ad2antrr φx=Ay=BSV
32 29 31 eqeltrd φx=Ay=BRV
33 biimt xCyDRVxxC,yDRy=RxCyDRVxxC,yDRy=R
34 24 28 32 33 syl3anc φx=Ay=BxxC,yDRy=RxCyDRVxxC,yDRy=R
35 22 26 oveq12d φx=Ay=BxxC,yDRy=AxC,yDRB
36 35 29 eqeq12d φx=Ay=BxxC,yDRy=RAxC,yDRB=S
37 34 36 bitr3d φx=Ay=BxCyDRVxxC,yDRy=RAxC,yDRB=S
38 9 nfeq2 yx=A
39 8 38 nfan yφx=A
40 nfmpo2 _yxC,yDR
41 nfcv _yB
42 9 40 41 nfov _yAxC,yDRB
43 42 12 nfeq yAxC,yDRB=S
44 43 a1i φx=AyAxC,yDRB=S
45 21 37 39 44 sbciedf φx=A[˙B/y]˙xCyDRVxxC,yDRy=RAxC,yDRB=S
46 nfcv _xA
47 nfmpo1 _xxC,yDR
48 46 47 10 nfov _xAxC,yDRB
49 48 11 nfeq xAxC,yDRB=S
50 49 a1i φxAxC,yDRB=S
51 4 45 7 50 sbciedf φ[˙A/x]˙[˙B/y]˙xCyDRVxxC,yDRy=RAxC,yDRB=S
52 20 51 mpbid φAxC,yDRB=S
53 13 52 eqtrd φAFB=S