Metamath Proof Explorer


Theorem ovmpt3rab1

Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o O = x V , y V z M a N | φ
ovmpt3rab1.m x = X y = Y M = K
ovmpt3rab1.n x = X y = Y N = L
ovmpt3rab1.p x = X y = Y φ ψ
ovmpt3rab1.x x ψ
ovmpt3rab1.y y ψ
Assertion ovmpt3rab1 X V Y W K U X O Y = z K a L | ψ

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o O = x V , y V z M a N | φ
2 ovmpt3rab1.m x = X y = Y M = K
3 ovmpt3rab1.n x = X y = Y N = L
4 ovmpt3rab1.p x = X y = Y φ ψ
5 ovmpt3rab1.x x ψ
6 ovmpt3rab1.y y ψ
7 1 a1i X V Y W K U O = x V , y V z M a N | φ
8 3 4 rabeqbidv x = X y = Y a N | φ = a L | ψ
9 2 8 mpteq12dv x = X y = Y z M a N | φ = z K a L | ψ
10 9 adantl X V Y W K U x = X y = Y z M a N | φ = z K a L | ψ
11 eqidd X V Y W K U x = X V = V
12 elex X V X V
13 12 3ad2ant1 X V Y W K U X V
14 elex Y W Y V
15 14 3ad2ant2 X V Y W K U Y V
16 mptexg K U z K a L | ψ V
17 16 3ad2ant3 X V Y W K U z K a L | ψ V
18 nfv x X V Y W K U
19 nfv y X V Y W K U
20 nfcv _ y X
21 nfcv _ x Y
22 nfcv _ x K
23 nfcv _ x L
24 5 23 nfrabw _ x a L | ψ
25 22 24 nfmpt _ x z K a L | ψ
26 nfcv _ y K
27 nfcv _ y L
28 6 27 nfrabw _ y a L | ψ
29 26 28 nfmpt _ y z K a L | ψ
30 7 10 11 13 15 17 18 19 20 21 25 29 ovmpodxf X V Y W K U X O Y = z K a L | ψ