Metamath Proof Explorer


Theorem ovmpt3rabdm

Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o O=xV,yVzMaN|φ
ovmpt3rab1.m x=Xy=YM=K
ovmpt3rab1.n x=Xy=YN=L
Assertion ovmpt3rabdm XVYWKULTdomXOY=K

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o O=xV,yVzMaN|φ
2 ovmpt3rab1.m x=Xy=YM=K
3 ovmpt3rab1.n x=Xy=YN=L
4 sbceq1a y=Yφ[˙Y/y]˙φ
5 sbceq1a x=X[˙Y/y]˙φ[˙X/x]˙[˙Y/y]˙φ
6 4 5 sylan9bbr x=Xy=Yφ[˙X/x]˙[˙Y/y]˙φ
7 nfsbc1v x[˙X/x]˙[˙Y/y]˙φ
8 nfcv _yX
9 nfsbc1v y[˙Y/y]˙φ
10 8 9 nfsbcw y[˙X/x]˙[˙Y/y]˙φ
11 1 2 3 6 7 10 ovmpt3rab1 XVYWKUXOY=zKaL|[˙X/x]˙[˙Y/y]˙φ
12 11 adantr XVYWKULTXOY=zKaL|[˙X/x]˙[˙Y/y]˙φ
13 12 dmeqd XVYWKULTdomXOY=domzKaL|[˙X/x]˙[˙Y/y]˙φ
14 rabexg LTaL|[˙X/x]˙[˙Y/y]˙φV
15 14 adantl XVYWKULTaL|[˙X/x]˙[˙Y/y]˙φV
16 15 ralrimivw XVYWKULTzKaL|[˙X/x]˙[˙Y/y]˙φV
17 dmmptg zKaL|[˙X/x]˙[˙Y/y]˙φVdomzKaL|[˙X/x]˙[˙Y/y]˙φ=K
18 16 17 syl XVYWKULTdomzKaL|[˙X/x]˙[˙Y/y]˙φ=K
19 13 18 eqtrd XVYWKULTdomXOY=K