Metamath Proof Explorer


Theorem ovollecl

Description: If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion ovollecl ABvol*ABvol*A

Proof

Step Hyp Ref Expression
1 ovolcl Avol*A*
2 1 3ad2ant1 ABvol*ABvol*A*
3 simp2 ABvol*ABB
4 ovolge0 A0vol*A
5 4 3ad2ant1 ABvol*AB0vol*A
6 simp3 ABvol*ABvol*AB
7 xrrege0 vol*A*B0vol*Avol*ABvol*A
8 2 3 5 6 7 syl22anc ABvol*ABvol*A