Metamath Proof Explorer


Theorem ovolsca

Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses ovolsca.1 φA
ovolsca.2 φC+
ovolsca.3 φB=x|CxA
ovolsca.4 φvol*A
Assertion ovolsca φvol*B=vol*AC

Proof

Step Hyp Ref Expression
1 ovolsca.1 φA
2 ovolsca.2 φC+
3 ovolsca.3 φB=x|CxA
4 ovolsca.4 φvol*A
5 1 2 3 4 ovolscalem2 φvol*Bvol*AC
6 4 recnd φvol*A
7 2 rpcnd φC
8 2 rpne0d φC0
9 6 7 8 divrecd φvol*AC=vol*A1C
10 ssrab2 x|CxA
11 3 10 eqsstrdi φB
12 2 rpreccld φ1C+
13 1 2 3 sca2rab φA=y|1CyB
14 4 2 rerpdivcld φvol*AC
15 ovollecl Bvol*ACvol*Bvol*ACvol*B
16 11 14 5 15 syl3anc φvol*B
17 11 12 13 16 ovolscalem2 φvol*Avol*B1C
18 4 16 12 lemuldivd φvol*A1Cvol*Bvol*Avol*B1C
19 17 18 mpbird φvol*A1Cvol*B
20 9 19 eqbrtrd φvol*ACvol*B
21 16 14 letri3d φvol*B=vol*ACvol*Bvol*ACvol*ACvol*B
22 5 20 21 mpbir2and φvol*B=vol*AC