Metamath Proof Explorer


Theorem oyon1cl

Description: The opposite Yoneda embedding at an object of C is a functor from C to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oyoncl.o O = oppCat C
oyoncl.y Y = Yon O
oyoncl.c φ C Cat
oyoncl.s S = SetCat U
oyoncl.u φ U V
oyoncl.h φ ran Hom 𝑓 C U
oyon1cl.b B = Base C
oyon1cl.p φ X B
Assertion oyon1cl φ 1 st Y X C Func S

Proof

Step Hyp Ref Expression
1 oyoncl.o O = oppCat C
2 oyoncl.y Y = Yon O
3 oyoncl.c φ C Cat
4 oyoncl.s S = SetCat U
5 oyoncl.u φ U V
6 oyoncl.h φ ran Hom 𝑓 C U
7 oyon1cl.b B = Base C
8 oyon1cl.p φ X B
9 1 7 oppcbas B = Base O
10 eqid C FuncCat S = C FuncCat S
11 10 fucbas C Func S = Base C FuncCat S
12 relfunc Rel O Func C FuncCat S
13 1 2 3 4 5 6 10 oyoncl φ Y O Func C FuncCat S
14 1st2ndbr Rel O Func C FuncCat S Y O Func C FuncCat S 1 st Y O Func C FuncCat S 2 nd Y
15 12 13 14 sylancr φ 1 st Y O Func C FuncCat S 2 nd Y
16 9 11 15 funcf1 φ 1 st Y : B C Func S
17 16 8 ffvelrnd φ 1 st Y X C Func S