Metamath Proof Explorer


Theorem pcelnn

Description: There are a positive number of powers of a prime P in N iff P divides N . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcelnn PNPpCntNPN

Proof

Step Hyp Ref Expression
1 nnz NN
2 1nn0 10
3 pcdvdsb PN101PpCntNP1N
4 2 3 mp3an3 PN1PpCntNP1N
5 1 4 sylan2 PN1PpCntNP1N
6 pccl PNPpCntN0
7 elnnnn0c PpCntNPpCntN01PpCntN
8 7 baibr PpCntN01PpCntNPpCntN
9 6 8 syl PN1PpCntNPpCntN
10 prmnn PP
11 10 nncnd PP
12 11 exp1d PP1=P
13 12 adantr PNP1=P
14 13 breq1d PNP1NPN
15 5 9 14 3bitr3d PNPpCntNPN