Metamath Proof Explorer


Theorem pcorev

Description: Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses pcorev.1 G=x01F1x
pcorev.2 P=01×F1
Assertion pcorev FIICnJG*𝑝JFphJP

Proof

Step Hyp Ref Expression
1 pcorev.1 G=x01F1x
2 pcorev.2 P=01×F1
3 eqid s01,t01Fifs1211t2s11t12s1=s01,t01Fifs1211t2s11t12s1
4 1 2 3 pcorevlem FIICnJs01,t01Fifs1211t2s11t12s1G*𝑝JFPHtpyJPG*𝑝JFphJP
5 4 simprd FIICnJG*𝑝JFphJP