Metamath Proof Explorer


Theorem pcorevcl

Description: Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypothesis pcorev.1 G=x01F1x
Assertion pcorevcl FIICnJGIICnJG0=F1G1=F0

Proof

Step Hyp Ref Expression
1 pcorev.1 G=x01F1x
2 iitopon IITopOn01
3 2 a1i FIICnJIITopOn01
4 iirevcn x011xIICnII
5 4 a1i FIICnJx011xIICnII
6 id FIICnJFIICnJ
7 3 5 6 cnmpt11f FIICnJx01F1xIICnJ
8 1 7 eqeltrid FIICnJGIICnJ
9 0elunit 001
10 oveq2 x=01x=10
11 1m0e1 10=1
12 10 11 eqtrdi x=01x=1
13 12 fveq2d x=0F1x=F1
14 fvex F1V
15 13 1 14 fvmpt 001G0=F1
16 9 15 mp1i FIICnJG0=F1
17 1elunit 101
18 oveq2 x=11x=11
19 1m1e0 11=0
20 18 19 eqtrdi x=11x=0
21 20 fveq2d x=1F1x=F0
22 fvex F0V
23 21 1 22 fvmpt 101G1=F0
24 17 23 mp1i FIICnJG1=F0
25 8 16 24 3jca FIICnJGIICnJG0=F1G1=F0