Metamath Proof Explorer


Theorem pczndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pczndvds PNN0¬PPpCntN+1N

Proof

Step Hyp Ref Expression
1 eqid supn0|PnN<=supn0|PnN<
2 1 pczpre PNN0PpCntN=supn0|PnN<
3 2 oveq1d PNN0PpCntN+1=supn0|PnN<+1
4 3 oveq2d PNN0PPpCntN+1=Psupn0|PnN<+1
5 prmuz2 PP2
6 eqid n0|PnN=n0|PnN
7 6 1 pcprendvds P2NN0¬Psupn0|PnN<+1N
8 5 7 sylan PNN0¬Psupn0|PnN<+1N
9 4 8 eqnbrtrd PNN0¬PPpCntN+1N