Metamath Proof Explorer


Theorem pcprendvds

Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A=n0|PnN
pclem.2 S=supA<
Assertion pcprendvds P2NN0¬PS+1N

Proof

Step Hyp Ref Expression
1 pclem.1 A=n0|PnN
2 pclem.2 S=supA<
3 1 2 pcprecl P2NN0S0PSN
4 3 simpld P2NN0S0
5 nn0re S0S
6 ltp1 SS<S+1
7 peano2re SS+1
8 ltnle SS+1S<S+1¬S+1S
9 7 8 mpdan SS<S+1¬S+1S
10 6 9 mpbid S¬S+1S
11 4 5 10 3syl P2NN0¬S+1S
12 1 pclem P2NN0AAxyAyx
13 peano2nn0 S0S+10
14 oveq2 x=S+1Px=PS+1
15 14 breq1d x=S+1PxNPS+1N
16 oveq2 n=xPn=Px
17 16 breq1d n=xPnNPxN
18 17 cbvrabv n0|PnN=x0|PxN
19 1 18 eqtri A=x0|PxN
20 15 19 elrab2 S+1AS+10PS+1N
21 20 simplbi2 S+10PS+1NS+1A
22 4 13 21 3syl P2NN0PS+1NS+1A
23 suprzub AxyAyxS+1AS+1supA<
24 23 2 breqtrrdi AxyAyxS+1AS+1S
25 24 3expia AxyAyxS+1AS+1S
26 25 3adant2 AAxyAyxS+1AS+1S
27 12 22 26 sylsyld P2NN0PS+1NS+1S
28 11 27 mtod P2NN0¬PS+1N