Metamath Proof Explorer


Theorem peano2nn

Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion peano2nn AA+1

Proof

Step Hyp Ref Expression
1 frfnom recxVx+11ωFnω
2 fvelrnb recxVx+11ωFnωAranrecxVx+11ωyωrecxVx+11ωy=A
3 1 2 ax-mp AranrecxVx+11ωyωrecxVx+11ωy=A
4 ovex recxVx+11ωy+1V
5 eqid recxVx+11ω=recxVx+11ω
6 oveq1 z=xz+1=x+1
7 oveq1 z=recxVx+11ωyz+1=recxVx+11ωy+1
8 5 6 7 frsucmpt2 yωrecxVx+11ωy+1VrecxVx+11ωsucy=recxVx+11ωy+1
9 4 8 mpan2 yωrecxVx+11ωsucy=recxVx+11ωy+1
10 peano2 yωsucyω
11 fnfvelrn recxVx+11ωFnωsucyωrecxVx+11ωsucyranrecxVx+11ω
12 1 10 11 sylancr yωrecxVx+11ωsucyranrecxVx+11ω
13 df-nn =recxVx+11ω
14 df-ima recxVx+11ω=ranrecxVx+11ω
15 13 14 eqtri =ranrecxVx+11ω
16 12 15 eleqtrrdi yωrecxVx+11ωsucy
17 9 16 eqeltrrd yωrecxVx+11ωy+1
18 oveq1 recxVx+11ωy=ArecxVx+11ωy+1=A+1
19 18 eleq1d recxVx+11ωy=ArecxVx+11ωy+1A+1
20 17 19 syl5ibcom yωrecxVx+11ωy=AA+1
21 20 rexlimiv yωrecxVx+11ωy=AA+1
22 3 21 sylbi AranrecxVx+11ωA+1
23 22 15 eleq2s AA+1