Metamath Proof Explorer


Theorem pell1234qrval

Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1234qrval DPell1234QRD=y|zwy=z+Dwz2Dw2=1

Proof

Step Hyp Ref Expression
1 fveq2 d=Dd=D
2 1 oveq1d d=Ddw=Dw
3 2 oveq2d d=Dz+dw=z+Dw
4 3 eqeq2d d=Dy=z+dwy=z+Dw
5 oveq1 d=Ddw2=Dw2
6 5 oveq2d d=Dz2dw2=z2Dw2
7 6 eqeq1d d=Dz2dw2=1z2Dw2=1
8 4 7 anbi12d d=Dy=z+dwz2dw2=1y=z+Dwz2Dw2=1
9 8 2rexbidv d=Dzwy=z+dwz2dw2=1zwy=z+Dwz2Dw2=1
10 9 rabbidv d=Dy|zwy=z+dwz2dw2=1=y|zwy=z+Dwz2Dw2=1
11 df-pell1234qr Pell1234QR=dy|zwy=z+dwz2dw2=1
12 reex V
13 12 rabex y|zwy=z+Dwz2Dw2=1V
14 10 11 13 fvmpt DPell1234QRD=y|zwy=z+Dwz2Dw2=1