Metamath Proof Explorer


Theorem pexmidlem7N

Description: Lemma for pexmidN . Contradict pexmidlem6N . (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙=K
pexmidlem.j ˙=joinK
pexmidlem.a A=AtomsK
pexmidlem.p +˙=+𝑃K
pexmidlem.o ˙=𝑃K
pexmidlem.m M=X+˙p
Assertion pexmidlem7N KHLXApA˙˙X=XX¬pX+˙˙XMX

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙=K
2 pexmidlem.j ˙=joinK
3 pexmidlem.a A=AtomsK
4 pexmidlem.p +˙=+𝑃K
5 pexmidlem.o ˙=𝑃K
6 pexmidlem.m M=X+˙p
7 simpl1 KHLXApA˙˙X=XX¬pX+˙˙XKHL
8 simpl3 KHLXApA˙˙X=XX¬pX+˙˙XpA
9 8 snssd KHLXApA˙˙X=XX¬pX+˙˙XpA
10 simpl2 KHLXApA˙˙X=XX¬pX+˙˙XXA
11 3 4 sspadd2 KHLpAXApX+˙p
12 7 9 10 11 syl3anc KHLXApA˙˙X=XX¬pX+˙˙XpX+˙p
13 vex pV
14 13 snss pX+˙ppX+˙p
15 12 14 sylibr KHLXApA˙˙X=XX¬pX+˙˙XpX+˙p
16 15 6 eleqtrrdi KHLXApA˙˙X=XX¬pX+˙˙XpM
17 3 5 polssatN KHLXA˙XA
18 7 10 17 syl2anc KHLXApA˙˙X=XX¬pX+˙˙X˙XA
19 3 4 sspadd1 KHLXA˙XAXX+˙˙X
20 7 10 18 19 syl3anc KHLXApA˙˙X=XX¬pX+˙˙XXX+˙˙X
21 simpr3 KHLXApA˙˙X=XX¬pX+˙˙X¬pX+˙˙X
22 20 21 ssneldd KHLXApA˙˙X=XX¬pX+˙˙X¬pX
23 nelne1 pM¬pXMX
24 16 22 23 syl2anc KHLXApA˙˙X=XX¬pX+˙˙XMX