Description: Lemma for pexmidN . The contradiction of pexmidlem6N and pexmidlem7N shows that there can be no atom p that is not in X .+ ( ._|_X ) , which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pexmidALT.a | |
|
pexmidALT.p | |
||
pexmidALT.o | |
||
Assertion | pexmidlem8N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pexmidALT.a | |
|
2 | pexmidALT.p | |
|
3 | pexmidALT.o | |
|
4 | nonconne | |
|
5 | simpll | |
|
6 | simplr | |
|
7 | 1 3 | polssatN | |
8 | 7 | adantr | |
9 | 1 2 | paddssat | |
10 | 5 6 8 9 | syl3anc | |
11 | df-pss | |
|
12 | pssnel | |
|
13 | 11 12 | sylbir | |
14 | df-rex | |
|
15 | 13 14 | sylibr | |
16 | simplll | |
|
17 | simpllr | |
|
18 | simprl | |
|
19 | simplrl | |
|
20 | simplrr | |
|
21 | simprr | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | 22 23 1 2 3 24 | pexmidlem6N | |
26 | 22 23 1 2 3 24 | pexmidlem7N | |
27 | 25 26 | jca | |
28 | 16 17 18 19 20 21 27 | syl33anc | |
29 | nonconne | |
|
30 | 29 4 | 2false | |
31 | 28 30 | sylib | |
32 | 31 | rexlimdvaa | |
33 | 15 32 | syl5 | |
34 | 10 33 | mpand | |
35 | 34 | necon1bd | |
36 | 4 35 | mpi | |