Metamath Proof Explorer


Theorem pf1mulcl

Description: The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q=raneval1R
pf1mulcl.t ·˙=R
Assertion pf1mulcl FQGQF·˙fGQ

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q=raneval1R
2 pf1mulcl.t ·˙=R
3 eqid R𝑠BaseR=R𝑠BaseR
4 eqid BaseR𝑠BaseR=BaseR𝑠BaseR
5 1 pf1rcl FQRCRing
6 5 adantr FQGQRCRing
7 fvexd FQGQBaseRV
8 eqid BaseR=BaseR
9 1 8 pf1f FQF:BaseRBaseR
10 9 adantr FQGQF:BaseRBaseR
11 fvex BaseRV
12 3 8 4 pwselbasb RCRingBaseRVFBaseR𝑠BaseRF:BaseRBaseR
13 6 11 12 sylancl FQGQFBaseR𝑠BaseRF:BaseRBaseR
14 10 13 mpbird FQGQFBaseR𝑠BaseR
15 1 8 pf1f GQG:BaseRBaseR
16 15 adantl FQGQG:BaseRBaseR
17 3 8 4 pwselbasb RCRingBaseRVGBaseR𝑠BaseRG:BaseRBaseR
18 6 11 17 sylancl FQGQGBaseR𝑠BaseRG:BaseRBaseR
19 16 18 mpbird FQGQGBaseR𝑠BaseR
20 eqid R𝑠BaseR=R𝑠BaseR
21 3 4 6 7 14 19 2 20 pwsmulrval FQGQFR𝑠BaseRG=F·˙fG
22 8 1 pf1subrg RCRingQSubRingR𝑠BaseR
23 6 22 syl FQGQQSubRingR𝑠BaseR
24 20 subrgmcl QSubRingR𝑠BaseRFQGQFR𝑠BaseRGQ
25 24 3expib QSubRingR𝑠BaseRFQGQFR𝑠BaseRGQ
26 23 25 mpcom FQGQFR𝑠BaseRGQ
27 21 26 eqeltrrd FQGQF·˙fGQ