| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pf1rcl.q | ⊢ 𝑄  =  ran  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | pf1mulcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) )  =  ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  =  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) | 
						
							| 5 | 1 | pf1rcl | ⊢ ( 𝐹  ∈  𝑄  →  𝑅  ∈  CRing ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | fvexd | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( Base ‘ 𝑅 )  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 9 | 1 8 | pf1f | ⊢ ( 𝐹  ∈  𝑄  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 11 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 12 | 3 8 4 | pwselbasb | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( Base ‘ 𝑅 )  ∈  V )  →  ( 𝐹  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  ↔  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 13 | 6 11 12 | sylancl | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  ↔  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 14 | 10 13 | mpbird | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝐹  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 15 | 1 8 | pf1f | ⊢ ( 𝐺  ∈  𝑄  →  𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 3 8 4 | pwselbasb | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( Base ‘ 𝑅 )  ∈  V )  →  ( 𝐺  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  ↔  𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 18 | 6 11 17 | sylancl | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐺  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  ↔  𝐺 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝐺  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  =  ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) | 
						
							| 21 | 3 4 6 7 14 19 2 20 | pwsmulrval | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹 ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) 𝐺 )  =  ( 𝐹  ∘f   ·  𝐺 ) ) | 
						
							| 22 | 8 1 | pf1subrg | ⊢ ( 𝑅  ∈  CRing  →  𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 23 | 6 22 | syl | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 24 | 20 | subrgmcl | ⊢ ( ( 𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  ∧  𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹 ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) 𝐺 )  ∈  𝑄 ) | 
						
							| 25 | 24 | 3expib | ⊢ ( 𝑄  ∈  ( SubRing ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹 ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) 𝐺 )  ∈  𝑄 ) ) | 
						
							| 26 | 23 25 | mpcom | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹 ( .r ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) 𝐺 )  ∈  𝑄 ) | 
						
							| 27 | 21 26 | eqeltrrd | ⊢ ( ( 𝐹  ∈  𝑄  ∧  𝐺  ∈  𝑄 )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝑄 ) |