Metamath Proof Explorer


Theorem pfxccatid

Description: A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018) (Revised by AV, 10-May-2020)

Ref Expression
Assertion pfxccatid AWordVBWordVN=AA++BprefixN=A

Proof

Step Hyp Ref Expression
1 lencl AWordVA0
2 nn0fz0 A0A0A
3 1 2 sylib AWordVA0A
4 3 3ad2ant1 AWordVBWordVN=AA0A
5 eleq1 N=AN0AA0A
6 5 3ad2ant3 AWordVBWordVN=AN0AA0A
7 4 6 mpbird AWordVBWordVN=AN0A
8 eqid A=A
9 8 pfxccatpfx1 AWordVBWordVN0AA++BprefixN=AprefixN
10 7 9 syld3an3 AWordVBWordVN=AA++BprefixN=AprefixN
11 oveq2 N=AAprefixN=AprefixA
12 11 3ad2ant3 AWordVBWordVN=AAprefixN=AprefixA
13 pfxid AWordVAprefixA=A
14 13 3ad2ant1 AWordVBWordVN=AAprefixA=A
15 10 12 14 3eqtrd AWordVBWordVN=AA++BprefixN=A