Metamath Proof Explorer


Theorem pfxccatin12lem2c

Description: Lemma for pfxccatin12lem2 and pfxccatin12lem3 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)

Ref Expression
Hypothesis swrdccatin2.l L=A
Assertion pfxccatin12lem2c AWordVBWordVM0LNLL+BA++BWordVM0NN0A++B

Proof

Step Hyp Ref Expression
1 swrdccatin2.l L=A
2 ccatcl AWordVBWordVA++BWordV
3 2 adantr AWordVBWordVM0LNLL+BA++BWordV
4 elfz0fzfz0 M0LNLL+BM0N
5 4 adantl AWordVBWordVM0LNLL+BM0N
6 elfzuz2 M0LL0
7 fzss1 L0LL+B0L+B
8 6 7 syl M0LLL+B0L+B
9 8 sselda M0LNLL+BN0L+B
10 ccatlen AWordVBWordVA++B=A+B
11 1 oveq1i L+B=A+B
12 10 11 eqtr4di AWordVBWordVA++B=L+B
13 12 oveq2d AWordVBWordV0A++B=0L+B
14 13 eleq2d AWordVBWordVN0A++BN0L+B
15 9 14 imbitrrid AWordVBWordVM0LNLL+BN0A++B
16 15 imp AWordVBWordVM0LNLL+BN0A++B
17 3 5 16 3jca AWordVBWordVM0LNLL+BA++BWordVM0NN0A++B