| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  | 
						
							| 2 | 1 | pfxccatin12lem2c |  | 
						
							| 3 |  | simprl |  | 
						
							| 4 |  | swrdfv |  | 
						
							| 5 | 2 3 4 | syl2an2r |  | 
						
							| 6 |  | elfzoelz |  | 
						
							| 7 |  | elfz2nn0 |  | 
						
							| 8 |  | nn0cn |  | 
						
							| 9 |  | nn0cn |  | 
						
							| 10 | 8 9 | anim12i |  | 
						
							| 11 |  | zcn |  | 
						
							| 12 |  | subcl |  | 
						
							| 13 | 12 | ancoms |  | 
						
							| 14 | 13 | anim1ci |  | 
						
							| 15 |  | subcl |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | addridd |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 |  | simplr |  | 
						
							| 20 |  | simpll |  | 
						
							| 21 | 18 19 20 | subsub3d |  | 
						
							| 22 | 17 21 | eqtr2d |  | 
						
							| 23 | 10 11 22 | syl2an |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 | 24 | eqcoms |  | 
						
							| 26 | 25 | eqeq1d |  | 
						
							| 27 | 23 26 | imbitrrid |  | 
						
							| 28 | 1 27 | ax-mp |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | 3adant3 |  | 
						
							| 31 | 7 30 | sylbi |  | 
						
							| 32 | 31 | ad2antrl |  | 
						
							| 33 | 6 32 | syl5com |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | impcom |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 |  | simpll |  | 
						
							| 38 |  | pfxccatin12lem2a |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 39 | imp |  | 
						
							| 41 |  | id |  | 
						
							| 42 |  | oveq1 |  | 
						
							| 43 | 41 42 | oveq12d |  | 
						
							| 44 | 43 | eleq2d |  | 
						
							| 45 | 44 | eqcoms |  | 
						
							| 46 | 1 45 | ax-mp |  | 
						
							| 47 | 40 46 | sylibr |  | 
						
							| 48 |  | df-3an |  | 
						
							| 49 | 37 47 48 | sylanbrc |  | 
						
							| 50 |  | ccatval2 |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 |  | simplr |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | lencl |  | 
						
							| 55 |  | elfzel2 |  | 
						
							| 56 |  | zsubcl |  | 
						
							| 57 | 56 | ancoms |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 |  | zre |  | 
						
							| 60 |  | zre |  | 
						
							| 61 |  | subge0 |  | 
						
							| 62 | 59 60 61 | syl2anr |  | 
						
							| 63 | 62 | biimprd |  | 
						
							| 64 | 63 | imp |  | 
						
							| 65 |  | elnn0z |  | 
						
							| 66 | 58 64 65 | sylanbrc |  | 
						
							| 67 | 66 | expcom |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 68 | expcomd |  | 
						
							| 70 | 69 | com12 |  | 
						
							| 71 | 70 | 3ad2ant3 |  | 
						
							| 72 | 71 | imp |  | 
						
							| 73 | 72 | com12 |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 | 74 | imp |  | 
						
							| 76 |  | simplr |  | 
						
							| 77 | 59 | 3ad2ant3 |  | 
						
							| 78 | 77 | adantl |  | 
						
							| 79 | 60 | adantr |  | 
						
							| 80 | 79 | adantr |  | 
						
							| 81 |  | nn0re |  | 
						
							| 82 | 81 | adantl |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 |  | lesubadd2 |  | 
						
							| 85 | 84 | biimprd |  | 
						
							| 86 | 78 80 83 85 | syl3anc |  | 
						
							| 87 | 86 | ex |  | 
						
							| 88 | 87 | com13 |  | 
						
							| 89 | 88 | adantl |  | 
						
							| 90 | 89 | impcom |  | 
						
							| 91 | 90 | impcom |  | 
						
							| 92 | 75 76 91 | 3jca |  | 
						
							| 93 | 92 | ex |  | 
						
							| 94 |  | elfz2 |  | 
						
							| 95 |  | elfz2nn0 |  | 
						
							| 96 | 93 94 95 | 3imtr4g |  | 
						
							| 97 | 96 | ex |  | 
						
							| 98 | 97 | com23 |  | 
						
							| 99 | 55 98 | syl |  | 
						
							| 100 | 99 | imp |  | 
						
							| 101 | 54 100 | syl5com |  | 
						
							| 102 | 101 | adantl |  | 
						
							| 103 | 102 | imp |  | 
						
							| 104 | 103 | adantr |  | 
						
							| 105 |  | pfxccatin12lem1 |  | 
						
							| 106 | 105 | adantl |  | 
						
							| 107 | 106 | imp |  | 
						
							| 108 |  | pfxfv |  | 
						
							| 109 | 53 104 107 108 | syl3anc |  | 
						
							| 110 | 6 | zcnd |  | 
						
							| 111 | 110 | ad2antrl |  | 
						
							| 112 | 55 | zcnd |  | 
						
							| 113 | 112 | ad2antrl |  | 
						
							| 114 | 113 | adantr |  | 
						
							| 115 |  | elfzelz |  | 
						
							| 116 | 115 | zcnd |  | 
						
							| 117 | 116 | ad2antrl |  | 
						
							| 118 | 117 | adantr |  | 
						
							| 119 | 114 118 | subcld |  | 
						
							| 120 | 111 119 | subcld |  | 
						
							| 121 | 120 | addridd |  | 
						
							| 122 | 121 | eqcomd |  | 
						
							| 123 | 122 | fveq2d |  | 
						
							| 124 | 109 123 | eqtrd |  | 
						
							| 125 | 36 51 124 | 3eqtr4d |  | 
						
							| 126 |  | simpll |  | 
						
							| 127 |  | simprl |  | 
						
							| 128 |  | lencl |  | 
						
							| 129 |  | elnn0uz |  | 
						
							| 130 |  | eluzfz2 |  | 
						
							| 131 | 129 130 | sylbi |  | 
						
							| 132 | 1 131 | eqeltrid |  | 
						
							| 133 | 128 132 | syl |  | 
						
							| 134 | 133 | adantr |  | 
						
							| 135 | 134 | adantr |  | 
						
							| 136 | 126 127 135 | 3jca |  | 
						
							| 137 | 136 | adantr |  | 
						
							| 138 |  | swrdlen |  | 
						
							| 139 | 137 138 | syl |  | 
						
							| 140 | 139 | eqcomd |  | 
						
							| 141 | 140 | oveq2d |  | 
						
							| 142 | 141 | fveq2d |  | 
						
							| 143 | 5 125 142 | 3eqtrd |  | 
						
							| 144 | 143 | ex |  |