Description: Lemma 1 for pfxccatin12 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 9-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | pfxccatin12lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 | |
|
2 | zsubcl | |
|
3 | 2 | 3adant1 | |
4 | 3 | adantr | |
5 | 1 4 | sylbi | |
6 | 5 | adantr | |
7 | elfzonelfzo | |
|
8 | 6 7 | syl | |
9 | elfz2nn0 | |
|
10 | nn0cn | |
|
11 | nn0cn | |
|
12 | elfzelz | |
|
13 | zcn | |
|
14 | subcl | |
|
15 | 14 | ancoms | |
16 | 15 | addridd | |
17 | 16 | eqcomd | |
18 | 17 | adantl | |
19 | simprr | |
|
20 | simpl | |
|
21 | 20 | adantl | |
22 | simpl | |
|
23 | 19 21 22 | npncan3d | |
24 | 23 | eqcomd | |
25 | 18 24 | oveq12d | |
26 | 25 | ex | |
27 | 12 13 26 | 3syl | |
28 | 27 | com12 | |
29 | 10 11 28 | syl2an | |
30 | 29 | 3adant3 | |
31 | 9 30 | sylbi | |
32 | 31 | imp | |
33 | 32 | eleq2d | |
34 | 33 | biimpa | |
35 | 0zd | |
|
36 | elfz2 | |
|
37 | zsubcl | |
|
38 | 37 | ancoms | |
39 | 38 | 3adant2 | |
40 | 39 | adantr | |
41 | 36 40 | sylbi | |
42 | 41 | adantl | |
43 | 6 35 42 | 3jca | |
44 | 43 | adantr | |
45 | fzosubel2 | |
|
46 | 34 44 45 | syl2anc | |
47 | 46 | ex | |
48 | 8 47 | syld | |