Metamath Proof Explorer


Theorem pfxfvlsw

Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 3-May-2020)

Ref Expression
Assertion pfxfvlsw WWordVL1WlastSWprefixL=WL1

Proof

Step Hyp Ref Expression
1 pfxcl WWordVWprefixLWordV
2 1 adantr WWordVL1WWprefixLWordV
3 lsw WprefixLWordVlastSWprefixL=WprefixLWprefixL1
4 2 3 syl WWordVL1WlastSWprefixL=WprefixLWprefixL1
5 fz1ssfz0 1W0W
6 5 sseli L1WL0W
7 pfxlen WWordVL0WWprefixL=L
8 6 7 sylan2 WWordVL1WWprefixL=L
9 8 fvoveq1d WWordVL1WWprefixLWprefixL1=WprefixLL1
10 simpl WWordVL1WWWordV
11 6 adantl WWordVL1WL0W
12 elfznn L1WL
13 fzo0end LL10..^L
14 12 13 syl L1WL10..^L
15 14 adantl WWordVL1WL10..^L
16 pfxfv WWordVL0WL10..^LWprefixLL1=WL1
17 10 11 15 16 syl3anc WWordVL1WWprefixLL1=WL1
18 4 9 17 3eqtrd WWordVL1WlastSWprefixL=WL1