| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxcl |
|
| 2 |
|
pfxcl |
|
| 3 |
|
eqwrd |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
|
simp2l |
|
| 7 |
|
simpl |
|
| 8 |
|
lencl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpl |
|
| 11 |
7 9 10
|
3anim123i |
|
| 12 |
|
elfz2nn0 |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
pfxlen |
|
| 15 |
6 13 14
|
syl2anc |
|
| 16 |
|
simp2r |
|
| 17 |
|
simpr |
|
| 18 |
|
lencl |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simpr |
|
| 21 |
17 19 20
|
3anim123i |
|
| 22 |
|
elfz2nn0 |
|
| 23 |
21 22
|
sylibr |
|
| 24 |
|
pfxlen |
|
| 25 |
16 23 24
|
syl2anc |
|
| 26 |
15 25
|
eqeq12d |
|
| 27 |
26
|
anbi1d |
|
| 28 |
15
|
adantr |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
raleqdv |
|
| 31 |
6
|
ad2antrr |
|
| 32 |
13
|
ad2antrr |
|
| 33 |
|
simpr |
|
| 34 |
|
pfxfv |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
16
|
ad2antrr |
|
| 37 |
23
|
ad2antrr |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eleq2d |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
biimpa |
|
| 42 |
|
pfxfv |
|
| 43 |
36 37 41 42
|
syl3anc |
|
| 44 |
35 43
|
eqeq12d |
|
| 45 |
44
|
ralbidva |
|
| 46 |
30 45
|
bitrd |
|
| 47 |
46
|
pm5.32da |
|
| 48 |
5 27 47
|
3bitrd |
|
| 49 |
48
|
3com12 |
|