Metamath Proof Explorer


Theorem pfxtrcfvl

Description: The last symbol in a word truncated by one symbol. (Contributed by AV, 16-Jun-2018) (Revised by AV, 5-May-2020)

Ref Expression
Assertion pfxtrcfvl WWordV2WlastSWprefixW1=WW2

Proof

Step Hyp Ref Expression
1 2z 2
2 1 a1i WWordV2W2
3 lencl WWordVW0
4 3 nn0zd WWordVW
5 4 adantr WWordV2WW
6 simpr WWordV2W2W
7 eluz2 W22W2W
8 2 5 6 7 syl3anbrc WWordV2WW2
9 ige2m1fz1 W2W11W
10 8 9 syl WWordV2WW11W
11 pfxfvlsw WWordVW11WlastSWprefixW1=WW-1-1
12 10 11 syldan WWordV2WlastSWprefixW1=WW-1-1
13 3 nn0cnd WWordVW
14 sub1m1 WW-1-1=W2
15 13 14 syl WWordVW-1-1=W2
16 15 adantr WWordV2WW-1-1=W2
17 16 fveq2d WWordV2WWW-1-1=WW2
18 12 17 eqtrd WWordV2WlastSWprefixW1=WW2