Metamath Proof Explorer


Theorem pibp19

Description: Property P000019 of pi-base. The class of countably compact topologies. A space X is countably compact if every countable open cover of X has a finite subcover. (Contributed by ML, 8-Dec-2020)

Ref Expression
Hypotheses pibp19.x X = J
pibp19.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
Assertion pibp19 J C J Top y 𝒫 J X = y y ω z 𝒫 y Fin X = z

Proof

Step Hyp Ref Expression
1 pibp19.x X = J
2 pibp19.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
3 pweq x = J 𝒫 x = 𝒫 J
4 unieq x = J x = J
5 4 1 eqtr4di x = J x = X
6 5 eqeq1d x = J x = y X = y
7 6 anbi1d x = J x = y y ω X = y y ω
8 5 eqeq1d x = J x = z X = z
9 8 rexbidv x = J z 𝒫 y Fin x = z z 𝒫 y Fin X = z
10 7 9 imbi12d x = J x = y y ω z 𝒫 y Fin x = z X = y y ω z 𝒫 y Fin X = z
11 3 10 raleqbidv x = J y 𝒫 x x = y y ω z 𝒫 y Fin x = z y 𝒫 J X = y y ω z 𝒫 y Fin X = z
12 11 2 elrab2 J C J Top y 𝒫 J X = y y ω z 𝒫 y Fin X = z