Metamath Proof Explorer


Theorem pidlnzb

Description: A principal ideal is nonzero iff it is generated by a nonzero elements (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses pidlnzb.1 B=BaseR
pidlnzb.2 0˙=0R
pidlnzb.3 K=RSpanR
Assertion pidlnzb RRingXBX0˙KX0˙

Proof

Step Hyp Ref Expression
1 pidlnzb.1 B=BaseR
2 pidlnzb.2 0˙=0R
3 pidlnzb.3 K=RSpanR
4 1 2 3 pidlnz RRingXBX0˙KX0˙
5 4 3expa RRingXBX0˙KX0˙
6 sneq X=0˙X=0˙
7 6 fveq2d X=0˙KX=K0˙
8 7 adantl RRingXBX=0˙KX=K0˙
9 3 2 rsp0 RRingK0˙=0˙
10 9 ad2antrr RRingXBX=0˙K0˙=0˙
11 8 10 eqtrd RRingXBX=0˙KX=0˙
12 11 ex RRingXBX=0˙KX=0˙
13 12 necon3d RRingXBKX0˙X0˙
14 13 imp RRingXBKX0˙X0˙
15 5 14 impbida RRingXBX0˙KX0˙