Metamath Proof Explorer


Theorem pjcjt2

Description: The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjcjt2 HCGCAHGprojHGA=projHA+projGA

Proof

Step Hyp Ref Expression
1 sseq1 H=ifHCHHGifHCHG
2 fvoveq1 H=ifHCHprojHG=projifHCHG
3 2 fveq1d H=ifHCHprojHGA=projifHCHGA
4 fveq2 H=ifHCHprojH=projifHCH
5 4 fveq1d H=ifHCHprojHA=projifHCHA
6 5 oveq1d H=ifHCHprojHA+projGA=projifHCHA+projGA
7 3 6 eqeq12d H=ifHCHprojHGA=projHA+projGAprojifHCHGA=projifHCHA+projGA
8 1 7 imbi12d H=ifHCHHGprojHGA=projHA+projGAifHCHGprojifHCHGA=projifHCHA+projGA
9 fveq2 G=ifGCGG=ifGCG
10 9 sseq2d G=ifGCGifHCHGifHCHifGCG
11 oveq2 G=ifGCGifHCHG=ifHCHifGCG
12 11 fveq2d G=ifGCGprojifHCHG=projifHCHifGCG
13 12 fveq1d G=ifGCGprojifHCHGA=projifHCHifGCGA
14 fveq2 G=ifGCGprojG=projifGCG
15 14 fveq1d G=ifGCGprojGA=projifGCGA
16 15 oveq2d G=ifGCGprojifHCHA+projGA=projifHCHA+projifGCGA
17 13 16 eqeq12d G=ifGCGprojifHCHGA=projifHCHA+projGAprojifHCHifGCGA=projifHCHA+projifGCGA
18 10 17 imbi12d G=ifGCGifHCHGprojifHCHGA=projifHCHA+projGAifHCHifGCGprojifHCHifGCGA=projifHCHA+projifGCGA
19 fveq2 A=ifAA0projifHCHifGCGA=projifHCHifGCGifAA0
20 fveq2 A=ifAA0projifHCHA=projifHCHifAA0
21 fveq2 A=ifAA0projifGCGA=projifGCGifAA0
22 20 21 oveq12d A=ifAA0projifHCHA+projifGCGA=projifHCHifAA0+projifGCGifAA0
23 19 22 eqeq12d A=ifAA0projifHCHifGCGA=projifHCHA+projifGCGAprojifHCHifGCGifAA0=projifHCHifAA0+projifGCGifAA0
24 23 imbi2d A=ifAA0ifHCHifGCGprojifHCHifGCGA=projifHCHA+projifGCGAifHCHifGCGprojifHCHifGCGifAA0=projifHCHifAA0+projifGCGifAA0
25 ifchhv ifHCHC
26 ifhvhv0 ifAA0
27 ifchhv ifGCGC
28 25 26 27 pjcji ifHCHifGCGprojifHCHifGCGifAA0=projifHCHifAA0+projifGCGifAA0
29 8 18 24 28 dedth3h HCGCAHGprojHGA=projHA+projGA