Metamath Proof Explorer


Theorem pjclem3

Description: Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 GC
pjclem1.2 HC
Assertion pjclem3 projGprojH=projHprojGprojGprojH=projHprojG

Proof

Step Hyp Ref Expression
1 pjclem1.1 GC
2 pjclem1.2 HC
3 df-iop Iop=proj
4 3 coeq2i projGIop=projGproj
5 1 pjfi projG:
6 5 hoid1i projGIop=projG
7 4 6 eqtr3i projGproj=projG
8 5 hoid1ri IopprojG=projG
9 3 coeq1i IopprojG=projprojG
10 7 8 9 3eqtr2i projGproj=projprojG
11 10 oveq1i projGproj-opprojGprojH=projprojG-opprojGprojH
12 oveq2 projGprojH=projHprojGprojprojG-opprojGprojH=projprojG-opprojHprojG
13 11 12 eqtrid projGprojH=projHprojGprojGproj-opprojGprojH=projprojG-opprojHprojG
14 helch C
15 14 pjfi proj:
16 2 pjfi projH:
17 1 15 16 pjddii projGproj-opprojH=projGproj-opprojGprojH
18 15 16 5 hocsubdiri proj-opprojHprojG=projprojG-opprojHprojG
19 13 17 18 3eqtr4g projGprojH=projHprojGprojGproj-opprojH=proj-opprojHprojG
20 2 pjoci proj-opprojH=projH
21 20 coeq2i projGproj-opprojH=projGprojH
22 20 coeq1i proj-opprojHprojG=projHprojG
23 19 21 22 3eqtr3g projGprojH=projHprojGprojGprojH=projHprojG