Metamath Proof Explorer


Theorem pjdifnormi

Description: Theorem 4.5(v)<->(vi) of Beran p. 112. (Contributed by NM, 26-Sep-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjdifnormi A0projGA-projHAihAnormprojHAnormprojGA

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 fveq2 A=ifAA0projGA=projGifAA0
4 fveq2 A=ifAA0projHA=projHifAA0
5 3 4 oveq12d A=ifAA0projGA-projHA=projGifAA0-projHifAA0
6 id A=ifAA0A=ifAA0
7 5 6 oveq12d A=ifAA0projGA-projHAihA=projGifAA0-projHifAA0ihifAA0
8 7 breq2d A=ifAA00projGA-projHAihA0projGifAA0-projHifAA0ihifAA0
9 2fveq3 A=ifAA0normprojHA=normprojHifAA0
10 2fveq3 A=ifAA0normprojGA=normprojGifAA0
11 9 10 breq12d A=ifAA0normprojHAnormprojGAnormprojHifAA0normprojGifAA0
12 8 11 bibi12d A=ifAA00projGA-projHAihAnormprojHAnormprojGA0projGifAA0-projHifAA0ihifAA0normprojHifAA0normprojGifAA0
13 ifhvhv0 ifAA0
14 2 13 1 pjdifnormii 0projGifAA0-projHifAA0ihifAA0normprojHifAA0normprojGifAA0
15 12 14 dedth A0projGA-projHAihAnormprojHAnormprojGA