Metamath Proof Explorer


Theorem pjin3i

Description: Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjin3.1 FC
pjin3.2 GC
pjin3.3 HC
Assertion pjin3i projF=projFprojGprojF=projFprojHprojF=projFprojGH

Proof

Step Hyp Ref Expression
1 pjin3.1 FC
2 pjin3.2 GC
3 pjin3.3 HC
4 ssin FGFHFGH
5 1 2 pjss2coi FGprojFprojG=projF
6 eqcom projFprojG=projFprojF=projFprojG
7 5 6 bitri FGprojF=projFprojG
8 1 3 pjss2coi FHprojFprojH=projF
9 eqcom projFprojH=projFprojF=projFprojH
10 8 9 bitri FHprojF=projFprojH
11 7 10 anbi12i FGFHprojF=projFprojGprojF=projFprojH
12 2 3 chincli GHC
13 1 12 pjss2coi FGHprojFprojGH=projF
14 eqcom projFprojGH=projFprojF=projFprojGH
15 13 14 bitri FGHprojF=projFprojGH
16 4 11 15 3bitr3i projF=projFprojGprojF=projFprojHprojF=projFprojGH