Metamath Proof Explorer


Theorem pl42N

Description: Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in MegPav2000 p. 2366). (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pl42.b B=BaseK
pl42.l ˙=K
pl42.j ˙=joinK
pl42.m ˙=meetK
pl42.o ˙=ocK
Assertion pl42N KHLXBYBZBWBVBX˙˙YZ˙˙WX˙Y˙Z˙W˙V˙X˙Y˙X˙W˙Y˙V

Proof

Step Hyp Ref Expression
1 pl42.b B=BaseK
2 pl42.l ˙=K
3 pl42.j ˙=joinK
4 pl42.m ˙=meetK
5 pl42.o ˙=ocK
6 eqid pmapK=pmapK
7 eqid +𝑃K=+𝑃K
8 1 2 3 4 5 6 7 pl42lem4N KHLXBYBZBWBVBX˙˙YZ˙˙WpmapKX˙Y˙Z˙W˙VpmapKX˙Y˙X˙W˙Y˙V
9 simpl1 KHLXBYBZBWBVBKHL
10 9 hllatd KHLXBYBZBWBVBKLat
11 simpl2 KHLXBYBZBWBVBXB
12 simpl3 KHLXBYBZBWBVBYB
13 1 3 latjcl KLatXBYBX˙YB
14 10 11 12 13 syl3anc KHLXBYBZBWBVBX˙YB
15 simpr1 KHLXBYBZBWBVBZB
16 1 4 latmcl KLatX˙YBZBX˙Y˙ZB
17 10 14 15 16 syl3anc KHLXBYBZBWBVBX˙Y˙ZB
18 simpr2 KHLXBYBZBWBVBWB
19 1 3 latjcl KLatX˙Y˙ZBWBX˙Y˙Z˙WB
20 10 17 18 19 syl3anc KHLXBYBZBWBVBX˙Y˙Z˙WB
21 simpr3 KHLXBYBZBWBVBVB
22 1 4 latmcl KLatX˙Y˙Z˙WBVBX˙Y˙Z˙W˙VB
23 10 20 21 22 syl3anc KHLXBYBZBWBVBX˙Y˙Z˙W˙VB
24 1 3 latjcl KLatXBWBX˙WB
25 10 11 18 24 syl3anc KHLXBYBZBWBVBX˙WB
26 1 3 latjcl KLatYBVBY˙VB
27 10 12 21 26 syl3anc KHLXBYBZBWBVBY˙VB
28 1 4 latmcl KLatX˙WBY˙VBX˙W˙Y˙VB
29 10 25 27 28 syl3anc KHLXBYBZBWBVBX˙W˙Y˙VB
30 1 3 latjcl KLatX˙YBX˙W˙Y˙VBX˙Y˙X˙W˙Y˙VB
31 10 14 29 30 syl3anc KHLXBYBZBWBVBX˙Y˙X˙W˙Y˙VB
32 1 2 6 pmaple KHLX˙Y˙Z˙W˙VBX˙Y˙X˙W˙Y˙VBX˙Y˙Z˙W˙V˙X˙Y˙X˙W˙Y˙VpmapKX˙Y˙Z˙W˙VpmapKX˙Y˙X˙W˙Y˙V
33 9 23 31 32 syl3anc KHLXBYBZBWBVBX˙Y˙Z˙W˙V˙X˙Y˙X˙W˙Y˙VpmapKX˙Y˙Z˙W˙VpmapKX˙Y˙X˙W˙Y˙V
34 8 33 sylibrd KHLXBYBZBWBVBX˙˙YZ˙˙WX˙Y˙Z˙W˙V˙X˙Y˙X˙W˙Y˙V