Metamath Proof Explorer


Theorem ply1ascl0

Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl0.w W=Poly1R
ply1ascl0.a A=algScW
ply1ascl0.o O=0R
ply1ascl0.1 0˙=0W
ply1ascl0.r φRRing
Assertion ply1ascl0 φAO=0˙

Proof

Step Hyp Ref Expression
1 ply1ascl0.w W=Poly1R
2 ply1ascl0.a A=algScW
3 ply1ascl0.o O=0R
4 ply1ascl0.1 0˙=0W
5 ply1ascl0.r φRRing
6 1 ply1sca RRingR=ScalarW
7 5 6 syl φR=ScalarW
8 7 fveq2d φ0R=0ScalarW
9 3 8 eqtrid φO=0ScalarW
10 9 fveq2d φalgScWO=algScW0ScalarW
11 eqid algScW=algScW
12 eqid ScalarW=ScalarW
13 1 ply1lmod RRingWLMod
14 5 13 syl φWLMod
15 1 ply1ring RRingWRing
16 5 15 syl φWRing
17 11 12 14 16 ascl0 φalgScW0ScalarW=0W
18 10 17 eqtrd φalgScWO=0W
19 2 fveq1i AO=algScWO
20 18 19 4 3eqtr4g φAO=0˙