Metamath Proof Explorer


Theorem ply1bas

Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1 P=Poly1R
ply1val.2 S=PwSer1R
ply1bas.u U=BaseP
Assertion ply1bas U=Base1𝑜mPolyR

Proof

Step Hyp Ref Expression
1 ply1val.1 P=Poly1R
2 ply1val.2 S=PwSer1R
3 ply1bas.u U=BaseP
4 eqid 1𝑜mPolyR=1𝑜mPolyR
5 eqid 1𝑜mPwSerR=1𝑜mPwSerR
6 eqid Base1𝑜mPolyR=Base1𝑜mPolyR
7 eqid BaseS=BaseS
8 2 7 5 psr1bas2 BaseS=Base1𝑜mPwSerR
9 4 5 6 8 mplbasss Base1𝑜mPolyRBaseS
10 1 2 ply1val P=S𝑠Base1𝑜mPolyR
11 10 7 ressbas2 Base1𝑜mPolyRBaseSBase1𝑜mPolyR=BaseP
12 9 11 ax-mp Base1𝑜mPolyR=BaseP
13 3 12 eqtr4i U=Base1𝑜mPolyR