Metamath Proof Explorer


Theorem ply1lvec

Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)

Ref Expression
Hypotheses ply1lvec.p P=Poly1R
ply1lvec.r φRDivRing
Assertion ply1lvec φPLVec

Proof

Step Hyp Ref Expression
1 ply1lvec.p P=Poly1R
2 ply1lvec.r φRDivRing
3 2 drngringd φRRing
4 1 ply1lmod RRingPLMod
5 3 4 syl φPLMod
6 1 ply1sca RDivRingR=ScalarP
7 2 6 syl φR=ScalarP
8 7 2 eqeltrrd φScalarPDivRing
9 eqid ScalarP=ScalarP
10 9 islvec PLVecPLModScalarPDivRing
11 5 8 10 sylanbrc φPLVec