Metamath Proof Explorer


Theorem ply1mulr

Description: Value of multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses ply1plusg.y โŠขY=Poly1โกR
ply1plusg.s โŠขS=1๐‘œmPolyR
ply1mulr.n โŠขยทห™=โ‹…Y
Assertion ply1mulr โŠขยทห™=โ‹…S

Proof

Step Hyp Ref Expression
1 ply1plusg.y โŠขY=Poly1โกR
2 ply1plusg.s โŠขS=1๐‘œmPolyR
3 ply1mulr.n โŠขยทห™=โ‹…Y
4 eqid โŠข1๐‘œmPwSerR=1๐‘œmPwSerR
5 eqid โŠขโ‹…S=โ‹…S
6 2 4 5 mplmulr โŠขโ‹…S=โ‹…1๐‘œmPwSerR
7 eqid โŠขPwSer1โกR=PwSer1โกR
8 eqid โŠขโ‹…PwSer1โกR=โ‹…PwSer1โกR
9 7 4 8 psr1mulr โŠขโ‹…PwSer1โกR=โ‹…1๐‘œmPwSerR
10 fvex โŠขBase1๐‘œmPolyRโˆˆV
11 1 7 ply1val โŠขY=PwSer1โกRโ†พ๐‘ Base1๐‘œmPolyR
12 11 8 ressmulr โŠขBase1๐‘œmPolyRโˆˆVโ†’โ‹…PwSer1โกR=โ‹…Y
13 10 12 ax-mp โŠขโ‹…PwSer1โกR=โ‹…Y
14 6 9 13 3eqtr2i โŠขโ‹…S=โ‹…Y
15 3 14 eqtr4i โŠขยทห™=โ‹…S