Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1opprmul.y | |
|
ply1opprmul.s | |
||
ply1opprmul.z | |
||
ply1opprmul.t | |
||
ply1opprmul.u | |
||
ply1opprmul.b | |
||
Assertion | ply1opprmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1opprmul.y | |
|
2 | ply1opprmul.s | |
|
3 | ply1opprmul.z | |
|
4 | ply1opprmul.t | |
|
5 | ply1opprmul.u | |
|
6 | ply1opprmul.b | |
|
7 | id | |
|
8 | 1 6 | ply1bascl | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | psr1bascl | |
12 | 8 11 | syl | |
13 | 1 6 | ply1bascl | |
14 | 9 10 | psr1bascl | |
15 | 13 14 | syl | |
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | 1 18 4 | ply1mulr | |
20 | 18 16 19 | mplmulr | |
21 | eqid | |
|
22 | 3 21 5 | ply1mulr | |
23 | 21 17 22 | mplmulr | |
24 | eqid | |
|
25 | 16 2 17 20 23 24 | psropprmul | |
26 | 7 12 15 25 | syl3an | |