Metamath Proof Explorer


Theorem ply1opprmul

Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1opprmul.y Y=Poly1R
ply1opprmul.s S=opprR
ply1opprmul.z Z=Poly1S
ply1opprmul.t ·˙=Y
ply1opprmul.u ˙=Z
ply1opprmul.b B=BaseY
Assertion ply1opprmul RRingFBGBF˙G=G·˙F

Proof

Step Hyp Ref Expression
1 ply1opprmul.y Y=Poly1R
2 ply1opprmul.s S=opprR
3 ply1opprmul.z Z=Poly1S
4 ply1opprmul.t ·˙=Y
5 ply1opprmul.u ˙=Z
6 ply1opprmul.b B=BaseY
7 id RRingRRing
8 1 6 ply1bascl FBFBasePwSer1R
9 eqid PwSer1R=PwSer1R
10 eqid BasePwSer1R=BasePwSer1R
11 9 10 psr1bascl FBasePwSer1RFBase1𝑜mPwSerR
12 8 11 syl FBFBase1𝑜mPwSerR
13 1 6 ply1bascl GBGBasePwSer1R
14 9 10 psr1bascl GBasePwSer1RGBase1𝑜mPwSerR
15 13 14 syl GBGBase1𝑜mPwSerR
16 eqid 1𝑜mPwSerR=1𝑜mPwSerR
17 eqid 1𝑜mPwSerS=1𝑜mPwSerS
18 eqid 1𝑜mPolyR=1𝑜mPolyR
19 1 18 4 ply1mulr ·˙=1𝑜mPolyR
20 18 16 19 mplmulr ·˙=1𝑜mPwSerR
21 eqid 1𝑜mPolyS=1𝑜mPolyS
22 3 21 5 ply1mulr ˙=1𝑜mPolyS
23 21 17 22 mplmulr ˙=1𝑜mPwSerS
24 eqid Base1𝑜mPwSerR=Base1𝑜mPwSerR
25 16 2 17 20 23 24 psropprmul RRingFBase1𝑜mPwSerRGBase1𝑜mPwSerRF˙G=G·˙F
26 7 12 15 25 syl3an RRingFBGBF˙G=G·˙F