Metamath Proof Explorer


Theorem ply1sclf

Description: A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
coe1scl.k K=BaseR
ply1sclf.b B=BaseP
Assertion ply1sclf RRingA:KB

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 coe1scl.k K=BaseR
4 ply1sclf.b B=BaseP
5 1 ply1sca2 IR=ScalarP
6 1 ply1ring RRingPRing
7 1 ply1lmod RRingPLMod
8 baseid Base=SlotBasendx
9 8 3 strfvi K=BaseIR
10 2 5 6 7 9 4 asclf RRingA:KB