Metamath Proof Explorer


Theorem ply1sclid

Description: Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
ply1sclid.k K=BaseR
Assertion ply1sclid RRingXKX=coe1AX0

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 ply1sclid.k K=BaseR
4 eqid 0R=0R
5 1 2 3 4 coe1scl RRingXKcoe1AX=x0ifx=0X0R
6 5 fveq1d RRingXKcoe1AX0=x0ifx=0X0R0
7 0nn0 00
8 iftrue x=0ifx=0X0R=X
9 eqid x0ifx=0X0R=x0ifx=0X0R
10 8 9 fvmptg 00XKx0ifx=0X0R0=X
11 7 10 mpan XKx0ifx=0X0R0=X
12 11 adantl RRingXKx0ifx=0X0R0=X
13 6 12 eqtr2d RRingXKX=coe1AX0