Metamath Proof Explorer


Theorem plydivalg

Description: The division algorithm on polynomials over a subfield S of the complex numbers. If F and G =/= 0 are polynomials over S , then there is a unique quotient polynomial q such that the remainder F - G x. q is either zero or has degree less than G . (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φ x S y S x + y S
plydiv.tm φ x S y S x y S
plydiv.rc φ x S x 0 1 x S
plydiv.m1 φ 1 S
plydiv.f φ F Poly S
plydiv.g φ G Poly S
plydiv.z φ G 0 𝑝
plydiv.r R = F f G × f q
Assertion plydivalg φ ∃! q Poly S R = 0 𝑝 deg R < deg G

Proof

Step Hyp Ref Expression
1 plydiv.pl φ x S y S x + y S
2 plydiv.tm φ x S y S x y S
3 plydiv.rc φ x S x 0 1 x S
4 plydiv.m1 φ 1 S
5 plydiv.f φ F Poly S
6 plydiv.g φ G Poly S
7 plydiv.z φ G 0 𝑝
8 plydiv.r R = F f G × f q
9 1 2 3 4 5 6 7 8 plydivex φ q Poly S R = 0 𝑝 deg R < deg G
10 simpll φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G φ
11 10 1 sylan φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G x S y S x + y S
12 10 2 sylan φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G x S y S x y S
13 10 3 sylan φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G x S x 0 1 x S
14 10 4 syl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G 1 S
15 10 5 syl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G F Poly S
16 10 6 syl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G G Poly S
17 10 7 syl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G G 0 𝑝
18 eqid F f G × f p = F f G × f p
19 simplrr φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G p Poly S
20 simprr φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G
21 simplrl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G q Poly S
22 simprl φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G R = 0 𝑝 deg R < deg G
23 11 12 13 14 15 16 17 18 19 20 8 21 22 plydiveu φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G q = p
24 23 ex φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G q = p
25 24 ralrimivva φ q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G q = p
26 oveq2 q = p G × f q = G × f p
27 26 oveq2d q = p F f G × f q = F f G × f p
28 8 27 eqtrid q = p R = F f G × f p
29 28 eqeq1d q = p R = 0 𝑝 F f G × f p = 0 𝑝
30 28 fveq2d q = p deg R = deg F f G × f p
31 30 breq1d q = p deg R < deg G deg F f G × f p < deg G
32 29 31 orbi12d q = p R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G
33 32 reu4 ∃! q Poly S R = 0 𝑝 deg R < deg G q Poly S R = 0 𝑝 deg R < deg G q Poly S p Poly S R = 0 𝑝 deg R < deg G F f G × f p = 0 𝑝 deg F f G × f p < deg G q = p
34 9 25 33 sylanbrc φ ∃! q Poly S R = 0 𝑝 deg R < deg G