Metamath Proof Explorer


Theorem pm14.123b

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123b AVBWzwφz=Aw=B[˙A/z]˙[˙B/w]˙φzwφz=Aw=Bzwφ

Proof

Step Hyp Ref Expression
1 2sbc5g AVBWzwz=Aw=Bφ[˙A/z]˙[˙B/w]˙φ
2 1 adantr AVBWzwφz=Aw=Bzwz=Aw=Bφ[˙A/z]˙[˙B/w]˙φ
3 nfa1 zzwφz=Aw=B
4 nfa2 wzwφz=Aw=B
5 simpr z=Aw=Bφφ
6 2sp zwφz=Aw=Bφz=Aw=B
7 6 ancrd zwφz=Aw=Bφz=Aw=Bφ
8 5 7 impbid2 zwφz=Aw=Bz=Aw=Bφφ
9 4 8 exbid zwφz=Aw=Bwz=Aw=Bφwφ
10 3 9 exbid zwφz=Aw=Bzwz=Aw=Bφzwφ
11 10 adantl AVBWzwφz=Aw=Bzwz=Aw=Bφzwφ
12 2 11 bitr3d AVBWzwφz=Aw=B[˙A/z]˙[˙B/w]˙φzwφ
13 12 pm5.32da AVBWzwφz=Aw=B[˙A/z]˙[˙B/w]˙φzwφz=Aw=Bzwφ