Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmod.a | |
|
pmod.s | |
||
pmod.p | |
||
Assertion | pmod1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmod.a | |
|
2 | pmod.s | |
|
3 | pmod.p | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 1 2 3 | pmodlem2 | |
7 | 6 | 3expa | |
8 | inss1 | |
|
9 | simpll | |
|
10 | simplr2 | |
|
11 | simplr1 | |
|
12 | 1 3 | paddss2 | |
13 | 9 10 11 12 | syl3anc | |
14 | 8 13 | mpi | |
15 | simpl | |
|
16 | 1 2 | psubssat | |
17 | 16 | 3ad2antr3 | |
18 | simpr2 | |
|
19 | ssinss1 | |
|
20 | 18 19 | syl | |
21 | 1 3 | paddss1 | |
22 | 15 17 20 21 | syl3anc | |
23 | 22 | imp | |
24 | simplr3 | |
|
25 | 9 24 16 | syl2anc | |
26 | inss2 | |
|
27 | 1 3 | paddss2 | |
28 | 26 27 | mpi | |
29 | 9 25 25 28 | syl3anc | |
30 | 2 3 | paddidm | |
31 | 9 24 30 | syl2anc | |
32 | 29 31 | sseqtrd | |
33 | 23 32 | sstrd | |
34 | 14 33 | ssind | |
35 | 7 34 | eqssd | |
36 | 35 | ex | |