| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmod.a |  | 
						
							| 2 |  | pmod.s |  | 
						
							| 3 |  | pmod.p |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 4 5 1 2 3 | pmodlem2 |  | 
						
							| 7 | 6 | 3expa |  | 
						
							| 8 |  | inss1 |  | 
						
							| 9 |  | simpll |  | 
						
							| 10 |  | simplr2 |  | 
						
							| 11 |  | simplr1 |  | 
						
							| 12 | 1 3 | paddss2 |  | 
						
							| 13 | 9 10 11 12 | syl3anc |  | 
						
							| 14 | 8 13 | mpi |  | 
						
							| 15 |  | simpl |  | 
						
							| 16 | 1 2 | psubssat |  | 
						
							| 17 | 16 | 3ad2antr3 |  | 
						
							| 18 |  | simpr2 |  | 
						
							| 19 |  | ssinss1 |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 | 1 3 | paddss1 |  | 
						
							| 22 | 15 17 20 21 | syl3anc |  | 
						
							| 23 | 22 | imp |  | 
						
							| 24 |  | simplr3 |  | 
						
							| 25 | 9 24 16 | syl2anc |  | 
						
							| 26 |  | inss2 |  | 
						
							| 27 | 1 3 | paddss2 |  | 
						
							| 28 | 26 27 | mpi |  | 
						
							| 29 | 9 25 25 28 | syl3anc |  | 
						
							| 30 | 2 3 | paddidm |  | 
						
							| 31 | 9 24 30 | syl2anc |  | 
						
							| 32 | 29 31 | sseqtrd |  | 
						
							| 33 | 23 32 | sstrd |  | 
						
							| 34 | 14 33 | ssind |  | 
						
							| 35 | 7 34 | eqssd |  | 
						
							| 36 | 35 | ex |  |