Metamath Proof Explorer


Theorem pmtrdifellem1

Description: Lemma 1 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
pmtrdifel.0 S=pmTrspNdomQI
Assertion pmtrdifellem1 QTSR

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 pmtrdifel.0 S=pmTrspNdomQI
4 eqid pmTrspNK=pmTrspNK
5 4 1 pmtrfb QTNKVQ:NK1-1 ontoNKdomQI2𝑜
6 difsnexi NKVNV
7 f1of Q:NK1-1 ontoNKQ:NKNK
8 fdm Q:NKNKdomQ=NK
9 difssd domQ=NKQIQ
10 dmss QIQdomQIdomQ
11 9 10 syl domQ=NKdomQIdomQ
12 difssd domQ=NKNKN
13 sseq1 domQ=NKdomQNNKN
14 12 13 mpbird domQ=NKdomQN
15 11 14 sstrd domQ=NKdomQIN
16 7 8 15 3syl Q:NK1-1 ontoNKdomQIN
17 id domQI2𝑜domQI2𝑜
18 eqid pmTrspN=pmTrspN
19 18 2 pmtrrn NVdomQINdomQI2𝑜pmTrspNdomQIR
20 3 19 eqeltrid NVdomQINdomQI2𝑜SR
21 6 16 17 20 syl3an NKVQ:NK1-1 ontoNKdomQI2𝑜SR
22 5 21 sylbi QTSR