Metamath Proof Explorer


Theorem pmtridfv1

Description: Value at X of the transposition of X and Y (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022)

Ref Expression
Hypotheses pmtridf1o.a φAV
pmtridf1o.x φXA
pmtridf1o.y φYA
pmtridf1o.t T=ifX=YIApmTrspAXY
Assertion pmtridfv1 φTX=Y

Proof

Step Hyp Ref Expression
1 pmtridf1o.a φAV
2 pmtridf1o.x φXA
3 pmtridf1o.y φYA
4 pmtridf1o.t T=ifX=YIApmTrspAXY
5 simpr φX=YX=Y
6 5 iftrued φX=YifX=YIApmTrspAXY=IA
7 4 6 eqtrid φX=YT=IA
8 7 fveq1d φX=YTX=IAX
9 fvresi XAIAX=X
10 2 9 syl φIAX=X
11 10 adantr φX=YIAX=X
12 8 11 5 3eqtrd φX=YTX=Y
13 simpr φXYXY
14 13 neneqd φXY¬X=Y
15 14 iffalsed φXYifX=YIApmTrspAXY=pmTrspAXY
16 4 15 eqtrid φXYT=pmTrspAXY
17 16 fveq1d φXYTX=pmTrspAXYX
18 1 adantr φXYAV
19 2 adantr φXYXA
20 3 adantr φXYYA
21 eqid pmTrspA=pmTrspA
22 21 pmtrprfv AVXAYAXYpmTrspAXYX=Y
23 18 19 20 13 22 syl13anc φXYpmTrspAXYX=Y
24 17 23 eqtrd φXYTX=Y
25 12 24 pm2.61dane φTX=Y