Metamath Proof Explorer


Theorem poml6N

Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses poml6.c C=PSubClK
poml6.p ˙=𝑃K
Assertion poml6N KHLXCYCXY˙˙XYY=X

Proof

Step Hyp Ref Expression
1 poml6.c C=PSubClK
2 poml6.p ˙=𝑃K
3 simpl1 KHLXCYCXYKHL
4 simpl2 KHLXCYCXYXC
5 eqid AtomsK=AtomsK
6 5 1 psubclssatN KHLXCXAtomsK
7 3 4 6 syl2anc KHLXCYCXYXAtomsK
8 simpl3 KHLXCYCXYYC
9 5 1 psubclssatN KHLYCYAtomsK
10 3 8 9 syl2anc KHLXCYCXYYAtomsK
11 simpr KHLXCYCXYXY
12 2 1 psubcli2N KHLYC˙˙Y=Y
13 3 8 12 syl2anc KHLXCYCXY˙˙Y=Y
14 5 2 poml4N KHLXAtomsKYAtomsKXY˙˙Y=Y˙˙XYY=˙˙X
15 14 imp KHLXAtomsKYAtomsKXY˙˙Y=Y˙˙XYY=˙˙X
16 3 7 10 11 13 15 syl32anc KHLXCYCXY˙˙XYY=˙˙X
17 2 1 psubcli2N KHLXC˙˙X=X
18 3 4 17 syl2anc KHLXCYCXY˙˙X=X
19 16 18 eqtrd KHLXCYCXY˙˙XYY=X