Metamath Proof Explorer


Theorem posdifsd

Description: Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses posdifsd.1 φANo
posdifsd.2 φBNo
Assertion posdifsd φA<sB0s<sB-sA

Proof

Step Hyp Ref Expression
1 posdifsd.1 φANo
2 posdifsd.2 φBNo
3 0sno 0sNo
4 3 a1i φ0sNo
5 2 1 subscld φB-sANo
6 4 5 1 sltadd1d φ0s<sB-sA0s+sA<sB-sA+sA
7 addslid ANo0s+sA=A
8 1 7 syl φ0s+sA=A
9 npcans BNoANoB-sA+sA=B
10 2 1 9 syl2anc φB-sA+sA=B
11 8 10 breq12d φ0s+sA<sB-sA+sAA<sB
12 6 11 bitr2d φA<sB0s<sB-sA